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ABSTRACT
Recent work has applied game-theoretic models to real-world se-
curity problems at the Los Angeles International Airport (LAX)
and Federal Air Marshals Service (FAMS). The analysis of these
domains is based on input from domain experts intended to cap-
ture the best available intelligence information about potential ter-
rorist activities and possible security countermeasures. Neverthe-
less, these models are subject to significant uncertainty—especially
in security domains where intelligence about adversary capabili-
ties and preferences is very difficult to gather. This uncertainty
presents significant challenges for applying game-theoretic anal-
ysis in these domains. Our experimental results show that stan-
dard solution methods based on perfect information assumptions
are very sensitive to payoff uncertainty, resulting in low payoffs for
the defender. We describe a model of Bayesian Stackelberg games
that allows for general distributional uncertainty over the attacker’s
payoffs. We conduct an experimental analysis of two algorithms for
approximating equilibria of these games, and show that the result-
ing solutions give much better results than the standard approach
when there is payoff uncertainty.
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1. INTRODUCTION
Game-theoretic modeling is an increasingly important tool in

real-world security applications. Two deployed software systems
for the Los Angeles International Airport (LAX) since August 2007 [3]
and the Federal Air Marshals Service (FAMS) [5] apply game the-
ory to generate optimal randomized schedules for security resources.
A critical element of these applications is the game model, which
specifies the possible actions for the security forces and attackers,
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as well as the payoffs for each possible outcome. These models
are typically based on the analysis of domain experts, which it turn
is based on available intelligence information. Unfortunately, in
most cases this information is highly uncertain, particularly with
regards to the preferences and capabilities of potential adversaries.
In this work we investigate security games where the defender has
substantial uncertainty about the attacker’s payoffs.

Previous work on Bayesian Stackelberg games has considered
uncertainty over a finite number of distinct attacker types. Un-
fortunately, existing algorithms (such as DOBSS [2]) do not scale
well as the number of attacker types increases, so this approach
is generally limited to a small number of attacker types. We in-
troduce a more general model with a continuous space of attacker
types. Conceptually, this model replaces the point estimates of an
attacker’s payoffs with a continuous distribution of possible pay-
offs, such as a Gaussian or Uniform distribution. This provides a
natural way for domain experts to express their uncertainty about
attacker payoffs, which are key parameters of the game model.
Finding Bayesian Stackelberg equilibria of these games is challeng-
ing, so we introduce two approximation techniques. We compare
these methods empirically with a perfect-information approach that
uses point estimates of the payoffs, and show that the approxima-
tion algorithms dramatically outperform the baseline method.

2. BAYESIAN SECURITY GAMES
We define a new class of Bayesian security games, extending

the security game model defined by Kiekintveld et. al. [1] to in-
clude continuous uncertainty about the attacker’s payoffs. A secu-
rity game has two players, a defender, Θ, and an attacker, Ψ, a set
of targets T = {t1, . . . , tn} that the defender wants to protect and
a set of identical resources R = {r1, . . . , rm} (e.g., police officers)
that the defender may deploy to protect the targets. The defender’s
pure strategy, denoted by σΘ, is a subset of targets from T with
size less than or equal to m. The attacker’s pure strategy, denoted
by σΨ, is exactly one target from T .

We consider a Bayesian Stackelberg game where the defender
has uncertainty about the attacker’s payoffs. The defender has two
possible payoffs if target t is attacked. If t is covered by a resource,
the payoff is Uc

Θ(t), and if it is not covered the payoff is Uu
Θ(t).

An attacker’s payoffs are dependent on the attacker’s type ω ∈ Ω.
For any target t each attacker type ω receives a payoff of Uu

Ψ(t, ω)
if t is uncovered, and Uc

Ψ(t, ω) if t is covered. The attacker’s type
(and therefore payoffs) is determined by nature at the start of the
game. The defender then commits to a mixed strategy for cover-
ing the targets, and the attacker observes both this strategy and it’s
type before selecting a strategy. We apply the standard solution
concept of Bayesian Stackelberg equilibrium, in which both play-
ers play a best-response. Every attacker type optimizes against the
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(known) defender strategy, and the defender chooses an optimal
strategy given the distribution of attacker types.

3. SOLUTION METHODS
We briefly describe two approaches for computing approximate

solutions to continuous Bayesian Stackelberg security games. Both
methods apply Monte-Carlo sampling from the space of attacker
types to estimate the probability that a target will be attacked for a
given defender strategy.

Sampled Bayesian ERASER: The idea of the first method is
to generate a finite Bayesian Stackelberg game to approximate the
infinite game with continuous attacker payoff distributions. Each
sample attacker type has two payoffs for each target, depending on
whether the target is covered or not. We construct a finite Bayesian
Stackelberg game using these sample types, each occurring with
equal probability. The resulting game can be solved using DOBSS [2],
an optimal mixed-integer program for finite Bayesian Stackelberg
games. We improve the speed of this method by incorporating
insights from ERASER [1] for the case of multiple defender re-
sources. We call this method Sampled Bayesian ERASER (SBE),
where SBE-x denotes the number of sample types x.

Sampled Replicator Dynamics: The SBE method computes an
exact optimal solution for the defender based on a sampling of the
possible attacker types. Here we introduce a method that approx-
imates the defender strategy, in addition to sampling the attacker
types. This approach is based on replicator dynamics [4]. The al-
gorithm begins by drawing a set of sample attacker types. For any
fixed defender strategy, we can compute the best-response for each
sample type. The number of types that choose to attack each target
gives an approximation of the probability that each target will be
attacked, which in turn allows the expected payoff for the defender
to be computed for this coverage strategy. Replicator dynamics is
used to search over the space of possible defender coverage strate-
gies. We call this method Sampled Bayesian ERASER (SBE) and
use SBE-x to denote this methods with x sample attacker types.

4. EVALUATION
We omit the majority of our evaluation due to space constraints,

but present one result demonstrating the importance of modeling
uncertainty rather than using a perfect-information approximation.
We generate 500 random game instances with 5 targets and 1 de-
fender resource. The defender’s payoffs for a covered target are
drawn from U [0, 100], and the uncovered payoffs from U [−100, 0].
The attacker’s payoffs are represented by Gaussian distributions,
with mean values drawn from U [−100, 0] for covered targets and
U [0, 100] for uncovered targets; we vary the standard deviation. A
sample attacker type is defined by drawing one value from each of
these distributions (two values for each target).

The baseline algorithm uses a single point to estimate each pay-
off, rather than a distribution. This is motivated by the standard
methodology for eliciting game models from domain experts, where
no information about the uncertainty of the parameters is included
in the model. We model this with a perfect-information model
where the attacker has only one type, corresponding to the mean
value for each payoff distribution. This can be solved exactly using
the SBE algorithm with a single attacker type, which we refer to as
"SBE-Mean."

Figure 1 presents results for the solution quality for SBE-Mean,
SBE, and SRD. We vary payoff uncertainty along the x-axis, mea-
sured by the standard deviation of the Gaussian distributions for
the attacker payoffs (in the same units as the payoffs). We run each
algorithm to generate a coverage strategy for the defender, and eval-

uate this coverage strategy against the true distribution of attacker
types. Since we do not have a closed-from solution to compute
this exactly, we rely on a very close approximation generated by
sampling 10000 attacker types to evaluate the payoffs for each al-
gorithm. The expected payoffs are shown on the vertical axis. We
run SBE with up to 7 sample types and SRD with up to 1000 due to
large differences in the computational scalability of the algorithms.
With only 7 types, SBE takes roughly 2 seconds to run, while SRD
runs in less than half a second with 1000 types and 5000 search
iterations.
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Figure 1: Expected payoffs for
SBE-Mean, SBE, and SRD with
varying numbers of sample at-
tacker types.

In Figure 1 we see
that the solution quality
for both SBE and SRD
is dramatically higher
than the SBE-Mean base-
line when there is pay-
off uncertainty, even if
the uncertainty is rel-
atively small. SBE
and SRD show im-
provements over the base-
line even with very
small numbers of sam-
ple attacker types, with
diminishing returns as
the number of types
increases. This is a
strong indication that
the perfect-information
approach is not a good approximation for security games with un-
certainty about the attacker’s payoffs. SBE and SRD represent the
first steps towards more robust methods that give high-quality so-
lutions even when there is payoff uncertainty.
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